Speaker dependent emotion recognition using speech signals

نویسندگان

  • Bong-Seok Kang
  • Chul-Hee Han
  • Sang-Tae Lee
  • Dae Hee Youn
  • Chungyong Lee
چکیده

This paper examines three algorithms to recognize speaker’s emotion using the speech signals. Target emotions are happiness, sadness, anger, fear, boredom and neutral state. MLB(Maximum-Likelihood Bayes), NN(Nearest Neighbor) and HMM(Hidden Markov Model) algorithms are used as the pattern matching techniques. In all cases, pitch and energy are used as the features. The feature vectors for MLB and NN are composed of pitch mean, pitch standard deviation, energy mean, energy standard deviation, etc. For HMM, vectors of delta pitch with delta-delta pitch and delta energy with delta-delta energy are used. A corpus of emotional speech data was recorded and the subjective evaluation of the data was performed by 23 untrained listeners. The subjective recognition result was 56% and was compared with the classifiers’ recognition rates. MLB, NN, and HMM classifiers achieved recognition rates of 68.9%, 69.3%, and 89.1%, respectively, for the speaker dependent and context-independent classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

EEMD-Based Speaker Automatic Emotional Recognition in Chinese Mandarin

Emotion feature extraction is the key to speech emotional recognition. And ensemble empirical mode decomposition(EEMD) is a newly developed method aimed at eliminating emotion mode mixing present in the original empirical mode decomposition(EMD). To evaluate the performance of this new method, this paper investigates the effect of a parameters pertinent to EEMD: speech emotional envelope. First...

متن کامل

Speaker Emotion Recognition Based on Speech Features and Classification Techniques

Speech Processing has been developed as one of the vital provision region of Digital Signal Processing. Speaker recognition is the methodology of immediately distinguishing who is talking dependent upon special aspects held in discourse waves. This strategy makes it conceivable to utilize the speaker's voice to check their character and control access to administrations, for example voice diali...

متن کامل

Comparison of speaker dependent and speaker independent emotion recognition

This paper describes a study of emotion recognition based on speech analysis. The introduction to the theory contains a review of emotion inventories used in various studies of emotion recognition as well as the speech corpora applied, methods of speech parametrization, and the most commonly employed classification algorithms. In the current study the EMO-DB speech corpus and three selected cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000